
Beating The System: Thunking
For Profit And Pleasure...
by Dave Jewell

Of the various development
systems that I use on a regular

basis, Delphi makes it easiest to
write code that’s readily portable
between 16- and 32-bit platforms.
This isn’t only true of application
development, it’s often true when
you’re developing components
too. This two way portability is a
testimony to the excellent VCL and
the way in which it hides the details
of the underlying Windows API.

However, life being what it is,
there will often be times when
you’re saddled with a large amount
of “legacy” code which wasn’t writ-
ten with Delphi. You may not even
have access to the source code – if
you’re coming from a traditional
C/C++ development background,
you may be used to working with
third-party DLLs such as communi-
cations libraries, statistical pack-
ages and so forth. If the vendors of
these packages have gone out of
business, or don’t have plans to
port them to 32-bits, then you’re
stuffed – or are you?

Wouldn’t it be great if you could
call your old 16-bit DLLs from a
32-bit Delphi 2 application? Well,
thunking will allow you to do ex-
actly that. Thunking can also be
used to make 32-bit API calls from
a 16-bit application. This is particu-
larly useful if you want to make use
of some of those juicy new Win32
features but you aren’t quite ready
to make the move to 32-bits yet.
With careful coding, it’s possible to
come up with an application which
will run under both Windows 3.1
and 32-bit platforms, using certain

32-bit features if they’re available.
This is especially relevant when
designing installation packages:
under Windows 95 they should
ideally be able to install desktop
shortcuts, add options to the start
menu and so forth.

Different Flavours Of Thunks
OK, so hopefully you’re sold on the
idea of thunking. Now let’s take a
look at the various options avail-
able. There are actually three dif-
ferent flavours of thunks available
as summarised in Table 1.

It’s amusing to note that the so-
called Universal Thunk is extremely
non-universal in practice! It’s only
applicable if you’re programming
specifically for the Win32s plat-
form. You may remember that
Win32s is a collection of DLLs and
VxDs which allow 32-bit applica-
tions to execute under Windows
3.1. As with other Win32s issues,
there are a number of caveats relat-
ing to the use of universal thunks
and because of their specialised
nature I won’t be discussing this
technique any further.

Of much more interest is the
Generic Thunk. Generic thunks are
supported under both Windows
NT and Windows 95 – that’s the
good news. The bad news is that

generic thunks will only allow you
to call 32-bit code from a 16-bit
application. You can’t do things
the other way round. However,
because generic thunks work un-
der both NT and Windows 95, they
represent a good design choice if
(as noted earlier) you’re in the
business of developing an installa-
tion package or you want to use
certain 32-bit API calls in your pro-
gram without porting everything
across to 32-bits.

The final thunking technique is
the so-called Flat Thunk. Again,
there’s good news and bad news.
On the positive side, flat thunks
will allow you to call 32-bit code
from 16-bit applications and vice
versa. On the negative side, flat
thunks are only supported under
Windows 95 at the present time
and you need to make use of
Microsoft’s thunk compiler.

To summarise, then, your choice
of thunking technique depends on
what’s most important to you. If
your main concern is source code
portability between Windows NT
and Windows 95, then Microsoft
recommend that you use generic
thunks. On the other hand, if the
most important thing is to be able
to call existing 16-bit code from a
32-bit application, and you’re not
too fussed about NT, then use flat
thunks. Even discounting universal
thunks, there is a third alternative
which can be used to get you out of
trouble in Windows 95 only situ-
ations. This employs a little-known
Kernel routine called QT_Thunk.
QT_Thunk will be covered in an
article next month by Brian Long.

Windows NT Windows 95 Win32s

Universal Thunk No No Yes

Flat Thunk No Yes No

Generic Thunk Yes Yes No

➤ Table 1: Thunk Flavours

New Name, Same Face!
From this issue, we’ve decided to re-name Dave Jewell’s regular
column, as you will see, to reflect the fact that he’s dealing with
operating system and API related issues, rather than the innards of
Delphi itself. As Dave shares more of his hard-won experience month
by month, we hope that you will find that in your own applications
you can indeed beat the system!

10 The Delphi Magazine Issue 11

The Generic Thunk Approach
Generic thunks are based on a rela-
tively small number of API calls, all
implemented within the Windows
95/NT Kernel. Despite the fact that
these routines are documented,
Borland do not provide function
prototypes so I’ve rolled my own as
shown in Listing 1.

The LoadLibraryEx32W routine
corresponds to the usual call to the
LoadLibrary API. From your 16-bit
application, you pass it a pointer to
the required 32-bit DLL and it gives
you back a 32-bit module handle for
the library. The hFile parameter is
reserved for future use and must
always be zero. If you look up the
routine name on your MSDN CD-
ROM, you’ll find that there are
some extra flags you can pass via
the third parameter which aren’t
required under normal circum-
stances. Incidentally, unlike its 16-
bit counterpart, this routine seems
to always return zero in the case of
failure and a non-zero value if it
worked. This is just as well since,
conventionally, you check for suc-
cess by testing the LoadLibrary re-
turn value to see if it’s greater than
or equal to $20. This won’t work
with LoadLibraryEx32W because 32-
bit module handles have bit 32 set,
which means that the compiler will
interpret a valid result as a nega-
tive number! Remember that there
is no unsigned 32-bit data type
under 16-bit Delphi.

The FreeLibraryEx32W routines
forms the 32-bit counterpart to the
familiar FreeLibrary call. You pass
the 32-bit module handle to this
routine when you’ve finished with
the library. GetProcAddress32W
takes a module handle and a proce-
dure name, returning the address
of the DLL routine you want to call.
This is where you need to tread
carefully! Bear in mind that what
you’ve been given is a 32-bit linear
procedure address, not a “16:16”
format (segment:offset) which is
what you will be used to dealing
with. You can’t call this address
directly, since it will be meaning-
less to a 16-bit process and will
cause an instant GPF. Moreover,
you shouldn’t even load this ad-
dress into a segment register, since
doing so will also cause a GPF, the

high part of the 32-bit linear ad-
dress being nonsense as far as
processor is concerned. When han-
dling what it thinks is an address,
the 16-bit compiler will often load
up a segment register even when
you’re not planning to reference
that address! For example, try us-
ing the Seg and Ofs macros with an
invalid address. By prototyping
this routine as returning a LongInt
instead of TFarProc we remove the
possibility of any such embarrass-
ment.

What is embarrassing, or at least
deeply irritating, is the way in
which Microsoft have defined the
CallProc32W and CallProcEx32W rou-
tines. As you’ll appreciate from the
names, these are the routines
which actually enable us to make
use of the 32-bit procedure address
we’ve retrieved. Both of these rou-
tines take a variable number of ar-
guments and therefore won’t work
with Pascal (yes, I know all about
Readln and Writeln but these rou-
tines are specifically ‘known’ to the
compiler and involve all sorts of
cunning behind the scenes trick-
ery). For this reason, the last two
function prototypes in the above
list won’t compile – they’re there
for illustrative purposes only.

Both routines can take up to 32
parameters. In both cases, the
nParams field specifies how many
parameters are actually being
passed, while the lpProcAddress32
field is the 32-bit procedure pointer
that we got from the call to
GetProcAddress32W. The field
fAddressConvert is made up of a
mask of 32 separate 1-bit fields, one
for each possible parameter. If a
particular bit is set, then the corre-
sponding parameter is converted
from a segment:offset form to a

32-bit linear address within the
call. Consequently, you need to set
a bit field whenever passing a
pointer to a 32-bit routine. The first
parameter corresponds to bit zero,
the second to bit one, and so on.
CallProc32W uses the Pascal calling
convention (the routine is itself re-
sponsible for cleaning up the
stack) while CallProcEx32W uses C
calling conventions (the caller
cleans up the stack).

Introducing DCallProc32
So what are we to do? Faced with a
couple of routines that we can’t
adequately prototype but have to
use, there’s no choice but to bite
the bullet and introduce a little as-
sembler programming. Let’s face it,
if you’ve kept up with the disk for-
matting saga of the last few
months, you should be able to
write inline assembler in your sleep
by now! However, we don’t want to
write reams of assembler every
time we call a 32-bit API routine. In
order to minimise the amount of
assembler, I’ve written a single
general purpose routine called
DCallProc32 (the D is for Delphi).

The source to this routine is
shown in Listing 2. If you’re familiar
with the wvsprintf API call, you’ll
see that I’ve used the same basic
approach. Rather than passing a
variable number of arguments on
the stack, which Delphi can’t do,
the routine expects a pointer, args,
to an array of 32-bit quantities,
each of which forms a parameter to
the target 32-bit DLL routine we’re
calling. As with the other routines
we’ve looked at, the nParams and
fAddressConvert parameters spec-
ify the number of parameters and
indicate which parameters should
be converted to 32-bit linear

function LoadLibraryEx32W (lpszLibFile: PChar; hFile, dwFlags: LongInt):
 LongInt; far; external ’KERNEL’ index 513;

function FreeLibraryEx32W (hInst: LongInt): Bool;
 far; external ’KERNEL’ index 514;

function GetProcAddress32W (hInst: LongInt; lpszProc: PChar): LongInt;
 far; external ’KERNEL’ index 515;

function CallProc32W (param1: LongInt; ... ; lpProcAddress32: Pointer,
 fAddressConvert, nParams: LongInt): LongInt;
 far; external ’KERNEL’ index 517;

function CallProcEx32W (nParams, fAddressConvert, lpProcAddress32,
 param1: LongInt; ...): LongInt; far; external ’KERNEL’ index 518;

➤ Listing 1

12 The Delphi Magazine Issue 11

addresses. The lpProcAddress32 pa-
rameter is the procedure address
of the routine we’re calling.

Notice the way I’ve declared the
CallProc32W routine. The fact that
it’s really a function which takes a
variable number of parameters is
irrelevant, this dummy declaration
is enough to get the identifier into
the compiler’s symbol table and
ensure that the relevant code is
generated when the subsequent
CALL instruction is executed in the
in-line assembler section.

To get you started, here are a
couple of examples of how you’d
use the DCallProc32 routine. In the
simplest case, you can pass an args
pointer of Nil if the target routine
doesn’t take any parameters. List-
ing 3 gives an example of how you
might call the InitCommonControls
routine in the 32-bit COMCTL32.DLL

library. Yes, using these tech-
niques it’s perfectly possible to
build a set of routines that will
allow you to use all those juicy 32-
bit Windows 95 controls inside a
16-bit application and, no, I’m not
going to do all the work for you! In
the second example, Listing 4,
we’re calling the KERNAL32 library
routine GlobalMemoryStatus. This
routine will, amongst other things,
return the total installed physical
memory and the current memory
load factor, information which it’s
normally quite difficult for a 16-bit
application to determine. Notice
that in this case we’re passing the
address of a data structure as the
only parameter to the target API
routine. Consequently, bit zero of
the fAddressConvert parameter is
set to indicate the pointer conver-
sion is required for the first
parameter.

It should be emphasised that if
you use 32-bit routines extensively
inside your 16-bit program, it isn’t
necessary to keep getting library
handles and procedure addresses
and then freeing the library han-
dles. You can get the library han-
dles for each required library just
once and then free them all when
the program terminates. Similarly,
procedure addresses for all re-
quired routines could be retrieved
just once and stored in global vari-
ables or an array of LongInt. These

techniques will considerably re-
duce the overhead associated with
each 32-bit call.

Other Thunking Issues
In addition to what’s been de-
scribed so far, there will also be
times when you need to explicitly

convert pointer addresses your-
self, convert between 16-bit and 32-
bit window handles, and so forth.
Converting pointer addresses is
relatively straightforward – you
can do it using GetVDMPointer32W
which exists in both Windows 95
and NT. This routine is defined:

procedure CallProc32W; far; external ’KERNEL’ index 517; { dummy declaration }

function DCallProc32(nParams, fAddressConvert, lpProcAddress32: LongInt;
 args: Pointer): LongInt; assembler;
asm
 push ds { stash DS register }
 push si { ditto for SI register }
 mov cx,word ptr nParams { number of params to push }
 jcxz @@2 { branch if no params }
 cld { ensure auto-increment }
 lds si,args { DS:SI point to arguments }
@1:
 lodsw { next arg (lo-order word) }
 xchg ax,bx { stash it in BX register }
 lodsw { next arg (hi-order word) }
 push ax { push hi-order word }
 push bx { push lo-order word }
 loop @@1 { loop until all done }
 { We’ve pushed all the parameters, now do the control stuff }
@2:
 push word ptr lpProcAddress32+2 { 32-bit proc addr(hi) }
 push word ptr lpProcAddress32 { 32-bit proc addr(lo) }
 push word ptr fAddressConvert+2 { convert mask(hi) }
 push word ptr fAddressConvert { convert mask(lo) }
 push word ptr nParams+2 { hi-word of nParams }
 push word ptr nParams { lo-word of nParams }
 call CallProc32W { let slip the dogs... }
 pop si { restore SI register }
 pop ds { restore DS register }
end;

➤ Listing 2

procedure TForm1.FormCreate(Sender: TObject);
var
 hLib: LongInt;
 pInitCC: LongInt;
begin
 { Calling InitCommonControls from a 16-bit app }
 hLib := LoadLibraryEx32W(’COMCTL32.DLL’, 0, 0);
 if hLib <> 0 then begin
 pInitCC := GetProcAddress32W(hLib, ’InitCommonControls’);
 DCallProc32(0, 0, pInitCC, Nil);
 FreeLibraryEx32W(hLib);
 end;
end;

➤ Listing 3

procedure TForm1.FormCreate(Sender: TObject);
var
 hLib: LongInt;
 mem: TMemoryStatus;
 pGMS: LongInt;
 pArg: Pointer; { This would be an array if more than one param }
begin
 hLib := LoadLibraryEx32W(’KERNEL32.DLL’, 0, 0);
 if hLib <> 0 then begin
 pGMS := GetProcAddress32W(hLib, ’GlobalMemoryStatus’);
 pArg := @mem;
 mem.dwLength := sizeof(mem);
 DCallProc32(1, 1, pGMS, @pArg);
 FreeLibraryEx32W(hLib);
 end;
end;

➤ Listing 4

14 The Delphi Magazine Issue 11

function GetVDMPointer32W(
 lpvAddress: Pointer; fMode:
 Word): LongInt; far;
 external ’KERNEL’ index 516;

To convert a 16-bit segment:offset
pair into a 32-bit linear address,
you pass it as the first parameter to
the routine. The second parameter
must be set to 1 if you’re passing a
protected mode Windows address.
Set it to zero if you’re passing a
real-mode DOS address. The func-
tion result will give you the corre-
sponding 32-bit linear address.

As a trivial example, the
following code fragment could be
used to replace the equivalent five
lines in Listing 4. Here, we do the
pointer conversion ourselves and
therefore fAddressConvert is set to
zero. The end result is the same.

pGMS := GetProcAddress32W(
 hLib, ’GlobalMemoryStatus’);
pArg := Pointer(
 GetVDMPointer32W(@mem, 1));
mem.dwLength := sizeof (mem);
DCallProc32(1, 0, pGMS, @pArg);
FreeLibraryEx32W(hLib);

A more difficult problem concerns
the issue of 16-bit versus 32-bit

window handles. The way in which
a 16-bit window handle is mapped
onto a 32-bit handle (or vice versa)
differs radically between Windows
NT and Windows 95. It’s therefore
important to come up with a solu-
tion that is portable to both plat-
forms. My suggestion would be to
use API routines to set the state of
a window, and then read back the
state of that window from ‘the
other side’ so to speak. In other
words, to convert a 16-bit window
handle to 32-bits, try calling
SetFocus (for example) with the re-
quired 16-bit window handle, and
then use generic thunking to call
the 32-bit GetFocus routine to re-
trieve the corresponding 32-bit
handle. This isn’t something that
I’ve tried – a certain amount of ex-
perimentation may be needed here
to come up with something that
works reliably. However, see the
Conclusions section for informa-
tion on some freeware source code
which takes this further.

You also need to take care when
converting segment:offset pointers
to 32-bit linear addresses and pass-
ing the resulting pointer to a 32-bit
call. An example of this is the code
fragment above where we called

GetVDMPointer32W. Under Windows,
because of the way that the Intel
segmented architecture works, a
pointer to a globally locked mem-
ory block will always remain valid,
even if the memory is physically
moved in memory. When you use
GlobalLock to de-reference a
Windows memory handle, you get
back a segment:address pair which
can be used to reference the mem-
ory block. However, behind the
scenes, there’s an additional level
of indirection which results from
having the processor run in pro-
tected mode. Thus, in contrast to
early versions of the Windows
system, you can happily allocate a
block of memory and leave it
locked. The behind the scenes
heap compactor will still be able to
move it around as needed, and
your pointer to the block will
always remain valid.

But (you just knew there was
going to be a ‘but’!) this situation
no longer applies when converting
to a 32-bit linear address. Part of
the raison d’être behind 32-bit pro-
gramming is to get away from
Intel’s brain-damaged segmented
architecture. The 32-bit linear
address of an object won’t remain

valid if the object gets moved. Con-
sequently, it’s necessary to “fix”
the object in memory before mak-
ing the 32-bit call. Unlike Global-
Lock, which is more of a historical
relic than anything else, GlobalFix
really will “fix” the memory block
so that it can’t be moved around.

When you ask CallProc32W or
CallProcEx32W to perform address
translation, the Kernel will inter-
nally look at the pointer you pass,
determine the corresponding
global handle and call GlobalFix to
lock the associated memory block.
Under normal circumstances,
you’ll let the Kernel do all the
address translation for you, but if
you need to call GetVDMPointer32W
to get a linear address and sub-
sequently pass that pointer to a
32-bit routine, then you should
bracket the call with GlobalFix and
GlobalUnfix. If you don’t know how
to get a global memory handle from
a pointer, take a look at the SDK
documentation on GlobalHandle.

Conclusion
Well, that’s almost all there is to
say about generic thunks. Included
on this month’s disk is a file called
CALL32NT.ZIP. This is freeware
and includes complete source
code for a Delphi unit which is
based on the same generic thunk-
ing API described here. However,
the author has taken things a step
further and developed a clever sys-
tem which automates the conver-
sion of pointers and window
handles when thunking up to 32-bit
code. Take a look at it, you’ll find it
invaluable if you want to add 32-bit
capabilities to your code without
porting the entire thing to 32-bits.

Finally, here’s an amusing little
tip for those who want Windows 95
progress bars in their 16-bit apps.
It turns out that the progress bar in
COMCTL32.DLL can be accessed
without doing any thunking at all!
Just create a window of the appro-
priate class and use the API call
SendMessage to get it to do the busi-
ness. A small demo program is
shown running in Figure 1 and the
code is given in Listing 5. In actual-
ity, this is cheating slightly: to be
‘safe’, you should call the 32-bit
InitCommonControls routine to

ensure that COMCTL32 has been
loaded into memory – and I’ve al-
ready given the code to show how
that’s done.

In next month’s issue, Brian Long
will take up the story by describing
flat thunks and the role of the thunk
compiler and will also describe
how to use QT_Thunk, another of
Microsoft’s undocumented API
calls, to perform ‘roll-your-own’
thunking at a low-level.

I, meanwhile, shall be moving on
to discuss the innards of the

Windows Help file format, with
some handy ideas on how you can
put this knowledge to practical
use.

Dave Jewell is a freelance consult-
ant, programmer and software
developer. You can contact him
either as DaveJewell@msn.com or
DSJewell@aol.com

➤ Figure 1

unit Unit1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Gauges, ExtCtrls;
type
 TForm1 = class(TForm)
 Dummy: TPanel;
 Timer1: TTimer;
 Label1: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure Timer1Timer(Sender: TObject);
 private
 public
 ProgressWnd: hWnd;
 end;
var Form1: TForm1;

implementation
const
 Progress_Class = ’msctls_progress32’;
 PBM_SetRange = WM_USER+1;
 PBM_SetPos = WM_USER+2;
 PBM_DeltaPos = WM_USER+3;
 PBM_SetStep = WM_USER+4;
 PBM_StepIt = WM_USER+5;
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 ProgressWnd := CreateWindow(Progress_Class, ’’, ws_Visible or ws_Child,
 Dummy.Left, Dummy.Top, Dummy.Width, Dummy.Height, Handle, 0, hInstance,
 Nil);
 if ProgressWnd = 0 then
 Application.Terminate;
 Dummy.Free;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 SendMessage(ProgressWnd, PBM_Stepit, 0, 0);
end;
end.

➤ Listing 5

16 The Delphi Magazine Issue 11

	Different Flavours of Thunks
	The Generic Thunk Approach
	Introducing DCallProc32
	Other Thunking Issues
	Conclusion

